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This paper 11troduces Important new functions for analytic solution of L.anch
ester-type equations of modern warfare tor combat between two homogeneous 
forces modeled by power attrition-fate coeffiCients W1th ·no offset • Tabulations 
of these Lsnchester-Ciiflord-Schlld/1 (or LCS) /unct1ons aDow one to study ths 
particular variable-coeffiCient model almost as easDy 8lld thoroughly as L.anch
ester s classic constant-coefficient one. LCS functions allow one to obtrun 
important formatiOn (10 particular, forco.enn!hllatlon prediction) wllhout having 
to spend the time and effort of computing force-level trajectories. The choice of 
these particutar functiOns as based on theoretical considerationS that apply In 
general to Lanchester·type equations of modem warfare and provide guidance 
for developing other canonical fln:tions. Moreover, our new LCS functions also 
provide valuabl anformabon about related variable-coefficient models Also, we 
111troduce an Important transformation of the battle's tame scala that not only 
simplifies the force-level equatoos. but also shows that relattYe fife e"ectfvenass 
and Intensity of combat are the only two weapon-system parameters determin
Ing the course of such variab'e-<:oefflcient Lanchester·type combat. 

I N AN EARLIER paper (Taylor and Brown [1976]), we showed how 
to solve variable-coefficient Lanchester-type equations of modern 

warfare for combat between two homogeneou~ forces. In that paper, we 
introduced cnnonical hyperbolic-like Lanchester functions for construct
ing the solution. Unfortunately, with only these previous results one is 
limited to computing force-·level trajectories and cannot gain a real 
understanding of qualitativ•~ model behavior (e.g. force annihilation) 
without extensive numerical computations (and only then for pecific 
value. of model parameters). Since the appearance of our earlier work, 
evernl mathematical dlscovt~ries (Taylor and Comstock [1977], Taylor 

[1979bj) have provided new qualitative in ight about the behavior of this 
combat model. We wish to show here how these new results allow 
parametric analysis of combat modeled by power attrition-rate coefti
cients with somewhat the sarne facility as allowed by F. W. Lanchester's 
cia ·ic constant-coefficient model. In order to obtain this analysis capa-

'ub)t'd d4ssi(u:ouon; 434 l.arKhfster·typc• equauons, .U9 (Orce-ellllibilat.IOD pmfirtion. 
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bility, however, one mu. t redefine the Lanchester-Clifford-Schliifli (or 
LCS) functions. which we introduced in Taylor and Brown [1976]. 

It is important for the military OR analyst to have 8 clear understand
ing of how the initial force ratio and weapon-system-capability parame
ters interact to determine a battle\ outcome. One is consequently inter
e ted in developing insights into the dynamics of combat by explicitly 
portraying tbe relation between the various factors of the combat
attrition process and battle outcome. Modeling battle termination is a 
somewhat controversial t.opic (Taylor [1979a]). and no mathematical 
theory exists for other than determining zero points of solutions 
(i.e. force annihilation) to such differential-equation models (Taylor 
[l979b]). However, it is of considerable utility just to be able to easily 
predict the occurrence of force annihilation in simulated Lanchester
type combat. One is always interested in determining what conditions 
lead to the annihilation of an enemy force, since such an occurrence (of 
course) guarantees victory. Although actual battles rarely go completely 
to annihilation, a commander may decide to terminate an engagement 
once he anticipates that annihilation i. po ible, and hence foroc-anni
hilation conditions may be useful in modeling engagement termination. 
Additionally, 8 commander would seek to avoid engagements in which 
his own force could be annihilated. and such conditions may provide, for 
example, valuable information for the modeling of engagement avoidance. 

In our earlier paper (Taylor and Brown 11976]), we gave various 
examples of hyperbolic-like Lanchester functions (in particular, the LCS 
functions, which arise from power attrition-rate coefficients with "no 
offset"). Subsequent research by Taylor and Comstock has revealed, 
however, that these canonical LCS functions must be redefined to permit 
force-annihilation prediction from initial conditions without having to 
spend the time and effort to compute force-level trajectorie . It then 
became obvious that the entire topic of representing the solution to such 
Lanchester-type equations in terms of general Lanchester functions 
(GLF) should be critically reexamined. Consequently, we developed new 
general considerations for the selection of canonical Lanchester functions 
(Taylor and Brown [1977a]). Bac;ed on these considerations, we also 
developed new LCS function. for the special case of power attrition-rate 
coefficients with "no off: et" (modeling. for example, weapon ystems 
with the same maximum effective range) which arc presented here. These 
power Lanchester (i.e. LCS) functions are significant, not only because 
they correspond to attrition-rate coefficients modeling a large class of 
combat situations of interest, but also becauge they yield valuable infor
mation about other related canonical Lanchester functions, e.g. the offset 
power Lnnchester functions (see Taylor and Brown [1978] and Section 
10 below). With the availability of tabulations of these new LCS func-
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tions, one can study this model almost as easily and thoroughly as 
Lanche ter's clas ic constant-coefficient one. Such model, are important 
for developing in ights into the dynamics of combat (Bonder and Honig 
(1971), Taylor (I980aj). 

The results of this paper are also important for understanding complex 
operational differential-equation models that are widely used in both the 
United States and also NATO countrie as defense-planning tools (. ee 
Huberet al. [1975,1979), Taylor [1979a)). The modern high-speed, large
scale digital computer bas made it po sible to develop and use such 
complex Lanchesler-type combat models (e.g. ce Bonder and Farrell 
(1970); Bonder and Honig; Command and Control Technical Center 
(CCTC) (1979)). Nevertheless, a simple comhat model • uch as we con
sider here may yield a clearer understanding of important relations that 
arc difficult to perceive in a more complex model, and such insights can 
provide valuable guidance for subsequent higher-re olution computerized 
investigations. A Geoffrion [1976] has emphasized, one can use a sim
plified auxiliary model for understanding the ba ic dynamics and behavior 
of a large-scale complex operational model. Furthermore, one can fit an 
analytical model to data generated from a detailed combat simulation, 
and thus a simple analytical model like the one considered here may 
provid an economical framework for • ummari7.ing simulation output 
data (sec lgnall ct al. [1978] for a lucid discussion of this modeling 
strategy in a nonmilitary context). 

1. VARIABLE-COEFFICIENT LANCHESTER·TYPE EQUATIONS OF 
MODERN WARFARE 

We consider the following variable-coefficient Danchester-lype equa
tions uf modern warfare for combat between two homogeneous forces for 
x and y> 0 {l'ee p. 45 of Taylor and Brown [1976) for further discussion) 

{
dxfdt = -a(t}y with x(O) = Xo, 

dyfdt = -b(t)x with y(O) = Yo, 
(1.1) 

where t = 0 denotes the time at which the battle begin., x(t) and y(t) 
denot the numbers of X and Y at timet, and a(t) and b(t) denote time
dependt•nt Lnnchester attrition-rate coefficients, which do not explicitly 
depend on x and y . In particular, both a and b depend explicitly upon 
time (perhap \'ia an intermediate variable such as range r(t)), but a doe~ 
not directly depend on the number of targets x. Although combat between 
two military force i. a complex random proc , such a deterministic 
model ol the combat attrition process is frequent} ' employed to provide 
insight into the dynamics of comhat (e.g. see Weis~ [1957); Bonder and 
Farrell; Bonder and Honig: Taylor and Parry [1975) , Taylor f1980a}). 
~forcovcr, current large-scale operational models (e.g. see Bonder and 
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Farrell, Bonder and Honig, CCTC} more or Jess take (1.1) as the point 
of departure for their development through the process of model enrich
ment (sec Morris [ 1967] for a lucid discussion of this enrichment process). 
For example, in the detailed VECTOR-2 operational model (e.g. see 
CCTC), the attrition-rate coefficients are nonnutonomou and depend 
{in quite n complicated fashion) on, not only the engagement conditions 
(e.g. range between firer and target, target and/or firer motion, posture, 
etc.), but also the number of firers and targets. 

Equations 1.1 are usually taken LO model combat in which both side~ 
use aimed fire and target acquisition times are independent of the number 
of ftrers and targets (see Taylor (1974, 1980s], Taylor and Brown [1976] 
for further details). Other fonns ofLancbester-type equations appear in 
the literature, but we will not consider them here (see Dolansky [1964], 
Taylor [1974, 1979a, 1980a]). The Lancbester attrition-rate coefficients 
a(t) and b(t) depend on such variables as force separation, tactical posture 
of targets, rate of target acquisition. firing doctrine, firing rate, and so 
forth (e.g. see Bonder [1965, 1967, 1970): Bonder and Farrell). Bonder 
[1965] (see also Bonder and Farrell) has stressed the importance for 
evaluating weapon systems of such variable coefficient differential com
bat models to represent temporal variations in firepower on the battle
field. 

We assume that a{t) and b(t) are defined, positive, and continuous for 
to< t < +oo with to :s 0 (see Taylor and Brown [1976], Taylor [1979b] 
for further discussion). We further assume that a(t) and b(t) are such 
that their right-hand limits exist at to, with +oo allowed As a possibility: 
we define a(tn) as lim1-~,+a(t) and similarly define b(to). Note that the 
values 0 and +oo are possible for a(t) and b(t) only ut t = tn. For 
convenience, we introduce the notation a(t) E L(to, T) to mean that 
J~ a(t)dt exists. We also a.~ume that a(t) and b(t) E L(to, T> for any 
finite T ~ t{). It follows that, for example, a(t) ft L(to, +oo) implies that 
limr-+<-> J~ a(t)dt = +oo. We will further take a(t) and b(t) to be given 
in the form a(t) = k.,g(t) and b(l) = kt/l(t}, where k,. and kb are positive 
constants chosen so that a(t)fb(t) - k,Jiq, if and only if g(t) • h(t) (see 
Taylor [ 1979b, 1982]). In other words, k.. and k, ore basically "scale 
facto~ ," which are useful for parametric study of battle outcomes as 
related to various ystem parameters. This factorization of a(t) and b(t) 
is not used directly in (1.1), but is implicit in constructing the general 
Lanchcster functions used to represent the analytical solution to (1.1) 
(see pp. 441 and 448 of Taylor [1979b]). It is also convenient to introduce 
the combat-intensit)' parameter >.1 and the rclatiue-firc-effectiueflcss pa
raTTU!ter >..R defined by 

and (1.2) 

(See Taylor and Brown [1978), Taylor [1979a, 1980bj for further details.) 
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The X force level as a function of time, x(t), may be repre:;ented as 
(Taylor and Brown [1976]) 

x(t) = ~ICv{O)Cx(t)- Sy(O)Sx(t)l (1.3) 

- YoJX;ICx(O)Sx(t)- s ,-.(O)Cx(t)l, 

where the hyperbolic-like general Lanchester functioru (GLF) C.x(t) and 
S x(t) are linearly independent solutions to the X force-leuel equation 

d 2xfdt2
- 1[1/a(t)]da/dtldx/dt- a(t)b(t)x = 0, (1.4) 

with initial conditions C.x<to) = 1,11/a(to)ldCx/dt(to) = 0, Sx(to) = 0, and 
ll/a(to)ldSx/dt(to) = 1/'~'f;. When (for example) a(to) = 0 or +oo, an 
initial value such as 11/a(to)ldCx/dt(to) . hould be interpreted as 
lim1-to+lll/a(t)jdCx/dt(t)]. Taylor and Com~tock, and Taylor [1979b] 
introduced nnd ~udied exponential-like GLF. In Taylor and Brown 
[1976], we have discussed the representation of force levels in terms of 
GLF and have shown that these two types (i.e. hyperbolic-like and 
exponential-like GLF) are essentially the only kinds of GLF, but that 
the hyperbolic-like ones are to be preferred. 

2. GENERAL FORCE·ANNIHILA TION-PREDICTION CONDITIONS 

The following theorem generalizes Lanchester's famous square law to 
variable-coefficient combat (see Taylor [1979b] for proof of a more 
general result). 

THEOREM 1 (Taylor and Comstock). Assume that either a{t) fl. L(O, +oo) 
or b(t) fE L(O, +oo). Th~n the X force will be annihilated in finite time if 
and only if 

~!Yo< JX;t[Cx{O) - Q*Sx(O)]/[Q*Cy(O) - Sy{O)]}, (2.1) 

where the parity-condition parameter Q• is unique and given by 

lim,_.., (Sx(t)/Cx(t)] = 1/Q* = 1/llim,-+.[Sr(O/Cv(t)]J. (2.2) 

An answer to the seemingly simple question "Who will be annihilated 
in battle?" requires a significant extension of the theory of the real zeros 
of nonoscillatory (in the strict sense) solutions to the general second
order linear differential equation (Taylor [1979b]). Furthennore, consid
eration of Theorem 1 !>hows that the power Lanche. ter (or LCS) func
tion. introduced in Taylor and Brown [1976] were inappropriately de
fined (see Taylor and Brown [1977a] for further details). It is, therefore, 
the purpo e of this paper to appropriately redefine the power Lanchester 
functions in light of Theorem 1. 
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3. COMBAT MODELED WITH POWER A TTRITION·RA TE 
COEFFICIENTS 

A lar~e class of tactical situations of interest can be modeled with the 
following general pou·er attrition-rate coe[[icient.'i 

a(t) = k.,(t + Ks)", and b(t) = ~(t + Ks + Ko)•, (3.1) 

where p., v, Ks, Kn ~ 0. Taylor and Brown [1976] discuss the modeling 
role~ of K..;; and Ko. We will call Ks the starting parameter, since it allows 
us to model battles that begin within the maximum effective ranges of 
both opponents. We will call Kn the offset parameter, since it allows us 
to model battles between opposing weapon systems with different maxi
mum effective range!'. We all'O observe that to= -Ks. 

The above nomenclature i1< motivated by Bonder's [1965) model of a 
constant-speed attack against a static defensive position 

dx/dt = -a(r)y, and dy/dt = -tJ(r)x, (3.2) 

where r denotes the range between opposing forces, and a(r) and p(r) 
denote range-dependent attrition-rate coenicients. Range is related to 
time by 

r(t) =ro-ut, (3.3) 

where 0 s t s ro/v, r0 denotes the opening range of battle, and u > 0 
denotes the constant attack speed. For example, consider the const.ant
Apeed attack of a homogeneous Y force against the static defem~ive 
position of a homogeneous X force (see Figure 1 ). The basic idea is that 
force separation (i.e. range between the opposing forces) changes over 
time and that the fire effectiveness of (for example) a single Y firer, 
denoted as a(r). depends on the force separation. 

In many cases of tactical interest, we may model the fire effectiveness 
of the }' weapon system a~ a function of range with (see pp. 196- 200 of 
Bonder and Farrell) 

i ao( 1 - r/r.,)" 
cr(r) = 

0 

for 0 s r s ra. 

for ra S r, 
(3.4) 

where r,. denotes the maximum effective range of the Y weapon ystem 
and 1.1. ~ 0 models the range dependency of )"s attrition-rate coefficient 
(see Figure 2). We model Jj(r) similarly, with corresponding qunntitie.-. r~ 
and v. 

Substituting (3.3) and (3.4) into (3.2), we find that Ko = (r11 - r.,)/u 
and Ks = (r,.- r0 )/u, and that ka = CJ()(v/r)" and kb = f3o(v/rtJ>"· Thus, Ko, 
Ks ~ 0 if and only if r0 2:: ' " 2:: ro. Moreover, for this particular application 
(and this situation is typical), the attrition-rate coefficienlc; are techni-
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cally not defined in the tactical scenario for t > lmax· Nevertheless, one 
can conceptually embed Bonder's tactical model with these time·depend
ent attrition-rat(' coefficients in the mathematical model in which (3.1) 
are assumed to hold for all t =:::: 0 as long as one is careful not to use any 
quantities computed from the mathematical model outside range of 
definition of the tactical scenario. In particular, one must verify that 
force annihilation occurs within the range of definition of the tactical 
scenario (e.g. before tmu for Bonder's tactical model), and this require
ment generates the need of computing the time at which force annihila
tion occurs in the mathematical model in which the coefficients are 
ac; ·umed to hold for all t ~ 0. We raise this point again in Sections 6 and 
8 and illu trate it in the examples given in Section 9. 

,,-,, 
, ' 

I \ 
I \ 
I I 
I I 
I I 
I I 
I I 
I T I 
I I 
\ I I 
\ I I 

'/ \ I / 

0 '-+--' 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

a (r l 

/3Cr) 

14------- r( t ),-------,~1 
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1+---------- 'o · 
I 

Opening Range of Bottle 

Figure 1. Diagram of Bonder's constant-sp ed attack model. Force 
separation. r(t), is given by r(t) == r0 - vt. 

When the oft!-;et parameter is equal to zero (i.e. K0 = 0), the coefficients 
(3.1) reduce t.o the following pou er attrition-rate coefficients with ·no 
off et" 

a(t) = k.,(t + Ks)", and b(t) = k,(t + KsY. (3.5) 

As we have just seen above in Bonder' model, these coefficients model 
(for example) combat between weapon systems \\ith the ~arne maximum 
effective range, so that there is no •·offset" in the capabilities of the 
oppo~ing systems to "'reach out" on the battlefield. It is the purpose of 
this paper to introduce new power Lanchester functions that facilitate 
force-annihilation prediction (and also determination of how long the 
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battle will last) for "aimed-fire" combat modeled by the power attrition
rate coefficients with "no offset" (3.5). The results of this section show 
how the physical characteristics of the weapon systems and environment 
are related to these coefficients. 

4. A TRANSFORMATION TO NORMALIZE THE BATTLE'S TIME 
SCALE BY THE INTENSITY OF COMBAT 

In this section we show how transformation of the battle's time ·cale 

0 .6 
Attrition

Rote 
Coefficient 

a< r) 
0.4 

0.2 

0 .0 
0 500 2500 

Ronoe r ( meters) 
Figure 2. Dependence of Y's attrition-rate coefficient a(r) on the 

exponent ~ with the maximum effective range of the weapon system and 
kill rate at zero range held constant. [Notes: (1) The maximum effective 
range of the system is denoted as r, = 2000 meters. (2) a(O) o= ao.., 0.6X 
casualties/(unit time x number of Y fuers) denotes the weapon-system 
kill rate for Y o.t zero force separation (range). (3) The opening range of 
battle is d noted Ill r0 = 1250 meters and (as !lhown) ro < r •. ! 

provides important insight into the parametric dependence of the course 
of combaL Accordingly, we introduce the new independent variable ., 
defined by (see Taylor and Brown [1976, l977a], Taylor [1979b] for 
further details) 

T(t) = i' Ja(s)b(s)ds, (4.1) 

and let To denote T(O). As is readily seen. this transformation is well 
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defined and invertible. We observe that to ::s 0 implies that To ;:: 0. If we 
denote the "average intensity of combat" as Ja(t)b(t), then 

Ja(t)b(t)t = {n/t) l' Ja(s)b(s)d·}t = r - T0• (4.2) 

The substitution (4.1) transforms (1.4) into 

d2x/dT 2 
- (1h)ld ln R(t)/dr!dx/dT - x = 0, (4.3) 

with initial conditions x(ro) =:co and fl/JR(O)Idx/dr(T0) =-yo, where 
R(t) = a(t)/b(t). Equation 4.3 i. highly significant (see Section 10 below) 
because it clearly how:; that the course of combat depends on just the 
two weapon· ystem parameters: (1) R(t) = a(t)/b(t), the relative fire 
effectiveness (}'to X) of the opposing weapon- ystem types, and (2) /(t) 
= Ja(t)b(t), the intensity of combat (through (4.1), which relates /(t) to 
., ). In particular, from ( 4.3) we ee that the nature of temporal variations 
in relative fire effectiveness will have a significant effect on the course 
of combat (see Taylor l1980b] for further details). 

For the power attrition-rate coefticients with no offRet (3.5), the 
transformed X force-level equation becomes 

d2:t/dT2 + {(2Q- 1)/ddx/dT -X = 0, (4.4) 

with initial conditions .x(r0) = :x0 and f(r/2)2q- 1dx/drl,- .. = -yo~{XJ/(~J. 
+ v + 2)1. Here 

q = (v + 1)/(J.t + 11 + 2), (4.5) 

and 

T(t) = f2Xr/(J.t + v + 2)j(t + Ks)'"+ri-2112• (4.6) 

Let Ul; ob::;erve that 0 < q < 1 when 11 and v > -1. Furthermore, q > 1h if 
and only if dR/dt < 0, i.e. RCt) is a strictly decreac;ing function of time. 

5. LANCHESTER-cLIFFORD-SCHLAFLI (LCS) FUNCTIONS 

Consider the function F.,(:x) defined by the power seric 

Fa(:x) = f(a) :L:'-o (:x/2)2A/ Ik!f(k + a)l . (5.1) 

For a <F 0, -1, -2, · .. , the radius of convergence for F .. (x) is infmite by 
the ratio te~t for convergence of power serie:- (Knopp {1956]). Hence. 
F.,(z) is an entire function of the complex variable z = x + iy with an 
es::;ential singularity at the point of infinity. Now consider the function 
Ha(x) defined by the infinite series 

Ha(X) = r(a) L~ (x/2)2(~)/lk!I'(k + a + 1)1. (5.2) 

Qb_erving thnt Hn(x) = (l/a)(:x/2)""F ... dx), we ·ee that for a> 0 the 
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infinite series (5.2) is uniformly convergent on compact subsets of the 
complex plane. One can also readily deduce the recursive relation Fa{:x) 
= F .. +1(.r) + l(.r/2)2/[tr(tr + l}IF0 .--z(.r). We will call the functions Fa(x) 
and H

0
(X) l.Anchester-Clifford-Schlafli (LCS) functions. Other properties 

are readily deduced and are given in Table I. 
Although the solution of the X force-level F..quation 1.4 with the power 

attrition-rate coefficients (3.5) may be expressed in terms of known 
higher tran cendental functions (see Taylor [1974), Taylor and Brown 
[1976]. Taylor and Comstock), we have cho en to introduce the LCS 
functions, since tabulations of these other functions are only available 
for a very restrictive range of parameter values of interest in Lanchester 
combat theory. For example, we can construct such solutions with 
modified Bessel functions of the fl1St kind of fractional order, but 
tabulations of the e {e.g. see Abramowitz and Stegun [ 1964]) exist only 
for a restrictive set of value· of the order p (i.e. p = ±V., +lh, ±lh, ±¥,, ± 

TABLE I 
PROPERTIES OPTHE LCS FUNCTIONS F.(x) AND H.(x) 

1. dF./fh • (x/2)1-s.H.(x). 
2. dH.Jdx • (x/2)'-'F.(x). 
3. F.IOI• 1. 
•· H.IO) • 0 for a> 0. 
5. F.(x)F1 .. (x)- H.(x)H1..,(:.c)- 1 for all x where a is neither an integer nor zero. 
6. df.'./dx(Ol • 0. 
7. l(.r/2)1 .. dH./d.r(x)J....., • L 
8. F,n(:.c) • cosh :.c. 
9. H1,(x) • Minh :.c. 

%), where p-= (p + 1)/(p + v + 2). Furthermore, there are no tabulations 
of functions corresponding to the quotient of two GLF. Consequently, 
we have introduced our new LCS functions, which provide much of the 
information desired about such battles. The naming of our LCS functions 
follows from the facts that a function similar to F0 (.r) was introduced by 
Ludwig Schliifli [ 1867 /68] and that a related one appears in a posthumous 
fragment of the great English geometer William Kingdon Clifford 
[1882). 

The function F.,(.r) satisfies the linear second-order ordinary differen· 
tial equation 

d2F.,/d.r2 + 1{2a - 1)/x)dF.,/dx - F,. = 0, (5.3) 

with initial conditions Fo(O) = 1 and dF.,/dx(O) = 0, while H.,(x) satisfies 

d 2H,./dx2 - ((2a - 1)/x}dH../dx - Ho = 0, (5.4) 

with initial conditions (for a> 0) H.,(O) = 0 and ((x/2)1-2"dH .. /dx(.r>l..-o 
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= 1. Thus, IF .. , H1-al is a fundamental system ofsolutions to 

d2F/dx2 + {(2a - 1)/xldF/dx - F = 0, {5.5) 

with Wron kian W(F.,, H1- .. ) = (x/2)1
-

241
• It follows that the GLF for the 

X and r force-level equations for combat modeled by (1.1) with attrition
rate coefficients (3.5) are given by 

Cx(t) = Fq(r), Sx(t) = {>.t/(~ + P + 2)12q-1Hp(T), (5.6) 

C){t) = Fp(T), Sy(t) = tXt/(~ +, + 2))1-2qHq{T), (5.7) 

where q i given by (4.5), p = 1- q, and T(t) i given by (4.6). 
If we define 

(5.8) 

and let T:x(t) = S;-.;(t)/C.A{t) denote a hyperbolic-like GLF corresponding 
to the hyperbolic tangent, then 

Tx{t) = 1>-r/(~ + , + 2)12q-17~(T). (5.9) 

Taylor l1979b] shows that for~ and"> -1, Tx(t) is o strictly increasing 
function with range [0, 1/Q•] for t E [0, +co) and that 

Q• = fr(q)/r(p)lf>.t/(~ + Jl + 2)1 1-'lq. {5.10) 

Consequently (2.2) and (5.9) yield that T .. (x) is strictly increasing with 
T,..(O) = 0 and 

lim ........ T,.(x) = r(l - a)/I'(a). (6.11) 

6. USE OF LCS FUNCTIONS FOR ANALYZING COMBAT 

The Lanchester-Clifford-Schliifli (LCS) functions F.,(x) and H .. (x) are 
very useful for analyzing "aimed-fire" combat modeled by the power 
attrition-rate coefficients with "no off: et" (3.5). Here, we assume that 
the attrition-rate coefficients (3.5) hold for all t ~ 0 in the mathematical 
model (1.1). Recall (see Section 3 above) that one mu t be careful not to 
use any re. ults computed from the mathematical model out of the range 
of definition of the tactical scenario describing the tactical situation 
considered in any particular application. For such combat, the ·e LCS 
functions may be used to ( 1) compute force levels as a function of time, 
(2) predict force annihilation, and (3) compute the time of force annihi
lation. We will now show how to obtain this information. 

According to (1.3), (5.6), and (5.7), we may write the X force level as 

x(t) = X<~IF,(To)Fq(T) - H 9(To)Hp(r)l 
(6.1) 

- Yo.fi:;IX1/(~ + "+ 2)f2q-1IF9(To)Hp(T) - Hp(ro)F9(T)I. 
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From (5.11) and (6.1) (~ce Taylor [1979bl for details), we may conclude 
the following force-annihilation-prediction result. (Alternatively, we may 
ubstitute (5.6), (5.7), and (5.10) into Theorem l to obtain Theorem 2.) 

THEOREM 2: Consider combat betu·een two homogeneous forces modeled 
for all t ~ 0 by (1.1) uith power attrition-rate coefficients (3.5). Assume 
that p. and " > -1. Then the X force will be annihilated in finite time if 
and only i{ 

%{)/Yo< ~(')..J/(p. + v + 2))9-P(f(p)/r(q))I[Fq(ro) 
(6.2) 

- (f(q)/l'(p)]Hp(;o)]/(Fp(To) - (f(p)/l'(q))Hq(To)JI. 

When To = 0 (i.e. Ks = 0), the X force will be annihilated to finite time if 
and only if 

Xo/Yo < ~().,j(p. + "+ 2))'~"'P(f(p)/I'(q)). (6.2a) 

However, one mu. t verify that force annihilation does not occur out of 
the range of definition of the tactical scenario for any particular appli
cation (e.g. after t.nu for Bonder's constant-speed attack model considered 
in Section 3 above). Turning now to the determination of the time at 
which annihilation occurs for the mathematical model in which the 
attrition-rate coefficients (3.5) have been aRsumed to hold for all t ~ 0, 
we see that when (6.2) is satisfied, the time to annihilate the X force, t0 x, 
is determined by x(tox) = 0. It follows that 

T11[;(t/)] = [XoFp(To) + Yo~[>..r/(p. + 11 + 2)]q-p 

Hp(ro))/[xoHq(ro) + Yo~(''A.J/(p. + 11 + 2)Jq-pFq(To)], 

or, more explicitly, 

t0 X = ;-1 IT;1[[Xof~(;o) + Yo~[>..J/(p. + '' + 2)]q-p 

·Hp(ro>J/[XoHq(io) + Yo~[>..J/(p. + 11 + 2W-PFq(To)1JI, 

where r-1 and '1';1 denote inverse functions. 

7. AVAILABLE TABULATIONS OF LCS FUNCTIONS 

(6.3) 

(6.4) 

Tabulations of the Lanchester-Ciifford-Schlafli functions. which are 
given in Taylor and Brown [1977b, 1977c], are available from the Na
tional Technical Information Service. These reports contain five-deci
mal-place tables of the hyperbolic-like LCS functions F.,(.r), H1-..Cx), and 
T.,(x) for values of the argument x = 0.00(0.01)2.00(0.1)10.0 and various 
valueJ of the order a. The short table (Taylor and Brown [1977c]) 
contains tabulations for eleven values of a in the range (0, 1) correspond
ing to p., " = 0, 1, 2, 3; while the longer table (Taylor and Brov.'ll 
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[1977b)) contains tabulations for 26 values of cr in the same range 
corresponding to J.t, v = 0, 1A, 1h, 1, 11h, 2, 3. As we have een above in 
Section 3 (bee (3.2), (3.4), and Figure 2), such values of Jl and,. allow one 
to onalyze, for exomple, a wide variety of range capabilities for weapon 
systems in Bonder's (1965] constant-.peed attack model {3.2). These 
tables have been calculated by the recursive methods given in Section 8 
of Taylor and Brown [1976]. 

8. OUTLINE OF COMPUTATIONAL PROCEDURE 

The above-mentioned tabulations of these new LCS functions make 
the analy. is of an important class of Lanchester-type battles a compar
atively easy matter. Before we con. ider numerical examples to ljhow that 
insights may be easily obtained into the dynamics of combat, let us 
outline the general computational procedure (based on the results given 
in Section 6) that one follows in the analysis of such combat. Accordingly, 
the basic steps involved are as follows: 

(1) Determine from (6.2) whether the X force can be annihilated, 
(2) If annihilation is possible, determine the time of the X force's 

annihilation as follows: 
(a) Compute T,(.,.0 x) by (6.3) [here Tax= T(t0x)], 
(b) Using interpolation, determine Tax from the appropriate tab

ulation of Tq, and 
(c) Using (4.5), compute tax= , - 1(.,./'\ 

Note from the above that these two determinations involve only the 
initial force ratio Uo = :xo/y0 (and not the individual initial force levels 
themselves). Additionally, one must verify that such numerical results 
hold within the range of definition of the tactical scenario in any 
particular application. For example, in the examples of the following 
section, we applied the above computational procedure to Bonder's 
constant- peed attack model for which the tactical scenario is only 
defined for 0 ::: t s tmu = ro/v. In these examples, when the X force is 
not annihilated within this given time t-·· we calculated the fmal X 
force level by (6.1) with the help of our tabulations. 

9. NUMERICAL EXAMPLES 

In the section we uamine a couple of numerical examples to. bow how 
our re 'Ults lead to insights about the dynamics of combat between two 
homogencou forces. As in Taylor [1974] and Taylor and Brown [1976], 
we consider Bonder's (1965] model (3.2) for the constant~speed attack 
against a static defensive position. We will focus on the new results of 
this paper [in particular, the prediction of battle outcome from initial 
conditions without explicitly computing the force-level trajectories] and 
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will follow the computational procedure outlined in the previous section. 
Here the tactical renario is defined only for 0 s t S Lmax• since the 
constant-speed attack ends at tmn = ro/L'. Hence, for t > tmas one must 
not use any results from the mathematical model in which the attrition
rate coefficients (3.5) have been assumed to hold for all time. From the 
input data given in Table II, we compute the parameter values sho~ n in 
Table IIJ. We observe from Table SB of Taylor nnd Brown (1977b) and 
Table 111 above, the predicted agreement between r(l - a)/r(a) and the 
limiting value of T,(.x) as x- +oc (see (5.11)) for a= q =~(recall (4.5)). 
We now consider two cases: (I) ro = 2000 meters, and (II} ro = 1250 
meters. The interested reader can find the e examples worked out in 
even more detail in Taylor and Brown [1977b, 1977c]. 

When r0 = 2000 meters (see Figure 3 of Taylor [1974]), we have Ks = 
0 and To = 0. The maximum time that the battle can last is tmas = 14.91 
minutes, since at this time the attackers reach their final objective (i.e 
the defensive position). We now consider the qualitative behavior of the 

TABLE 11 
INPUT DATA FOB NUMERICAL F..XAMI'LES 

pco),pc:. 2. 
"o • 0.06X casualties/minute/ Y unit. 
fJo ... 0.6 }"casualties/minute/ X unit. 
r.- r, • 2000 meters. 
u • 5 miles/hour. 

Jl = 1, v = 2 force-level trajectory shown in Figure 3 of Taylor [ 1974]. 
Theorem 2 tells us that X can be annihilated if and only if X<~/Yo < 0.420. 
By (6.3), the annihilation time of the X force is given by Tvlr(t,,X)] = 
3.544 x0/y0• For .x0 = 10, y0 = 30, we have Tq(r,X) = 1.8122 so that from 
Table SA of Taylor and Brown [1977b] (using linear interpolation) we 
obtain Tax= 1.009. Hence, (4.6) yields tax= 14.24 minutes and r0 x = 89.8 
meters. Further result are given in Table IV. 

When ro = 1250 meters (see Figure 3 of Taylor and Brown 11976)), we 
have Ks = 5.5923 meters, To = 0.0975, and tDWl == 9.32 minutes. In this 
case (again, for,. = 1, v == 2), X can be annihilated if and only if Xo/Yo < 
0.382 with (from {6.3)) the annihilation time of the X force given by 
Tq(Tax) = {3.565Uo + 0.223)/(0.156Uo + 1.004), where Uo = .xo!Yo- Some 
further numerical results are given in Table V. Again, the e parametric 
results should be contrasted with the gingle p. = 1, v = 2 force-level 
trajectory shown in Figure 3 of Taylor and Brown [1976]. 

10. FlNAL REMARKS 

In Section:. 6 and 9, we have seen how our new definition of power 
Lanchest.er functions (guided by the general requirements for GLF given 



766 Taylor and Brown 

in Taylor and Brown [1977a]) allows one to conveniently obtain much 
valuable information about the model (1.1) with attrition-rate coefficients 
(3.5) without explicitly computing the entire {orce-leuel trajectories. In his 
well-known survey paper on the Lanchester theory of comhat, Dolansky 
sugge::.ted the development of such outcome-predicting relations without 
solving in detail and/or computing force-level trajectories as one of 
everal problems for further research. Our Theorem 2 is a step toward 

resolving this problem (see also Taylor and Parry; Taylor and Comstock; 
Taylor [1979a]). Previously, one was limited to being able to compute 
only force-level trajectories, but now we can tell who is going to be 
annihilated (and when} without explicitly computing the trajectories. 

We have answered questions about qualitative model behavior (e.g. 
force annihilation), not only for specific values of, for examplet initial 
foroe levels, but al o for the entire po sible range of value~ for the initial 
force ratio (i.e. parametric analysis of model behavior). The results of 
this paper may be used for other parametric analyse:- (see Bonder [1971] 
for a lucid discussion of the importance of such analyses), e.g. parametric 

TABLE III 
PARAMETER VALUES FOR NUMERICAL ExAMPI.ES 

Jr. • 4.0233 X 10-a X cuualtics/(minute)"/Yunit. 
let • 2.6979 x lQ-3 Y casualties/(minute)'/X unit. 
p- 2/5, q - 3/5. 
l'(p)/I"(q) ... 1.48951. 
KIJ-o 

dependence of battle outcome on attrition-rate coefficients. Thus, our 
new results now allow one to develop important insights into the dynam
ics of combat between two homogeneous forces with temporal variations 
in fire effectiveness. With the availability (Taylor and Brown [1977b, 
1977c]) of tabulations of the LCS functions, one can now analyze combat 
modeled by the power attrition-rate coefficients (3.5) with somewhat the 
same facility as he can for the constant~coefficient case and thus aid in 
parameter analyses. 

In hi classic papcrt Lanchester [ 1914] considered constant fire effec
tivenes for individual firers and deduced his famou square law 

(10.1) 

where a and {J denote the constant attrition-rate coefficients. It follows 
from (10.1) that (provided there is no "time limit"' for combat) 

X will be annihilated if and only i{ X()/Yo < .Ja://3. (10.2) 

Thu , we see that equality of Lanchester-type fighting strengths depends 
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TABLE IV 
ANNIHILATION OF THE X FORCE AS A FUNCTION Of TUE INITI.Al. FORCE RATIO 

FOR r0 = 2000 METERs 

0.333 
0.250 
0.200 

t. x(Minutes) 

14.24 
11.61 
10.19 

89.8 
443.2 
633.2 

on two parameters: (I) initial force ratio, and (II) relative effectiveness. 
When the timing of military actions is also considered, we add a third 
parameter, the intensity of combat = ./;;p, to this list of significant 
combat parameters. No such simple relation like the square law (10.1), 
which yields ( 10.2). holds in general for variable attrition-rate coeffi
cients. However, by transforming the independent variable t to normalize 
the battle's time scale by the intensity of combat, we found that the 
course of such variable-coefficient combat depends on only the two 
weapon-. ystem parameters: (I) relative fire effectiveness, R(t) = a(t)/ 
b(t), and (II) intensity of combat, /(t) = Ja(t)b(t). This way of viewing 
the attrition-rate coefficients a(t) and b(t) is both intuitively appealing 
and also important because under some circumstances relative fire effec
tiveness (1.e. only one parameter) plays the major role in determining 
battle outcome (e.g. when a(t)/b(t) • constant, the intensity of combat 
does not influence the outcome of battle (provided that there is no time 
limitation)). (See also Taylor [1980b).) Moreover, we did extend (10.2) 
to combat modeled with the power attrition-rate coefficients with "no 
offset" (3.5) (see Theorem 2). This i the first time that such a generali
zation of the square law has been obtained for the variable-coefficient 
Lanche-.ter-type model (1.1) with a(t)/b(t) ¢constant. We ob erve that 
for Ks > 0. this .. exact" outcome-prediction relation (i.e. necessary and 
sufficient condition for force annihilation) involves higher transcendental 
functions (here, the LCS functions) and is complementary to the suffi. 
cient condition (involving only elementary functions) given by Taylor 
and Parry for Ks > 0. 

Work by Bonder [1965, 1967, 1970), Clark [1969], Barfoot [1969]. and 

TABLE V 
ANNIHILATION OF THE X FORCI>: AS A FUNCTION OF THB INITtAl. FORCE RATIO 

FOR r0 "' 1250 METERS 

(Xo/Yo) t.x(Minutes) r • .x(Mcters) 

0.333 10.63 -· 
0.250 7.56 235.9 
0.200 6.17 422.8 

• '- • 9.32 minutes and %f = :x(r- 0) • 1.3.'\. 
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Bonder and Farrell on the prediction of Lanchester attrition-rate coef
ficients (see Taylor and Brown [ 1976) for further discussion and refer
ence ) has generated interest in variable-coefficient Lanchcster-type 
models. lntere t in the power attrition-rate coefficient~ \\ith "no offset" 
(3.5) is provided by . Bonder's [1965] model (3.2) nnd his examination 
of predicted attrition rate for \ arious weapon system (see pp. 196-200 
of Bonder and Farrell). However useful our re!lults may be in their own 
right, they have far greater import: (I) they are a model for the tTeatment 
of other Lanchester functions and their tabulations, and (II) they may 
be used in the numerical determination of the parity-condition parameter 
Q• for related attrition-rate coefficients (e.g. (3.1) with K0 > 0). In Taylor 
and Brown [1978], we how how our tabulations of the LCS functions 
play a key role in the numerical determination of the parity condition 
parameter Q• for the general power attrition-rate coefficients (3.1 with 
positive "offset" (i.e. Ko > 0). 

We have extended our mathematical theory (Taylor and Brown 
[ 1976]) of variable-coefficient Lanchester-type equations of "modern 
warfare'' for combat between two homogeneous force in order to be able 
to more thoroughly analyze such models ( ee also Taylor and Brown 
[I977aj). The classic ordinary-differential- quation theories (e.g. see 
Hille [1969]) were inadequate to ... upply all the answers -ought about 
such combat models (1~nylor [1979b]). 'l'he mathematical theory of the 
model ( 1.1) \\ ith coefficients (3.5) i · now nearly as complete as that of 
the constant-coefficient model. Such result.s as we have given here are 
very useful for understancling the dynamics of combat, i.e. how the trading 
of casualties will be projected over time. H. K. Weiss [1959] has empha
sized that such a ::;implified combat model is particularly valuable when 
it leads to a clearer understanding of . uch significant relationships that 
would tend to be ob. cured in a more complex model. 
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